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A s o l u t i o n  is ob ta ined  o f  the  p r o b l e m  o f  the t empera tu re  d i s t r ibu t ion  in a s u b l i m a t i o n  f l o w  in a slot.  

The effect of sublimation on heat transfer in flat channels is considered in [ 1 ]. In what follows the problem 

of [1 ] is extended to the case of a sublimation flow in a gap between two rotating disks. 

1. Consider a steady-state laminar flow of subliming vapor in a narrow slot between circular horizontal 

porous disks rotating with angular velocities w I and w 2. Let the lower disk be subjected to a constant, uniformly 

distributed heat flux with intensity q. The substance is sublimed from the upper disk at a constant rate %. The 

problem is solved in a cylindrical coordinate system with the axis z directed along the axis of the disks and the 

axis r along the radius of the slot. The coordinate origin is located on the axis of symmetry of the disks at an equal 

distance between them (Fig. 1). Assuming that the problem is one of rotational symmetry, we write the mass 

transfer and continuity equations for steady flow in the form 

du  du  v d_p_ + + + 
u - - + w  = -  - - I - -  - - -  - -  

dr dr  r dr  Re r dr  dz  2 ' 

dv  dv  uv 1 (d2v  + 1 dv  + d2v v ] 

u - - +  w - - +  - ~ - ~ r  z - -  dr dz  r Re r dr  dz  2 ' 
I 

u - - + w - - =  -- + - -  + - - - - +  
dr dz dz Re ~ dr  2 r dr dz 2) ' 

du  u d w  
d---~ + -- + = 0  r ~ " 

(1) 

In reducing system (1) to dimensionless form, the components of the velocity vector u, v, w were referred 
w 2 to Ws, the pressure to p s, and the coordinates to the characteristic geometrical parameter h. The boundary 

conditions are 

u----0, v = ool r , w = w I at z = - - l ;  

u = O ,  v = o J 2 r ,  w = w  s at z = l .  

A solution of this system will be sought in the form 

r 
u = - - ~ f  (z),  v =  r79(z) ,  w = f ( z ) ,  (2) 

where f ,  f, 79 are dimensionless functions. 

Substitution of Eq. (2) into Eq. (1) gives the system of ordinary differential equations 
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Fig. 1. Schematic diagram of flow in slot. 

f ' " + R e  f - f f " - 2 ~ o  2 = -  Re d_e 
dr  ' 

~o" - Re 0r~o ' - ~of' ) = 0 [ " - f f ' R e = R e  dp 
' d z  " 

(3) 

In this case the continuity equation is satisfied identically. 

Using cross-differentiation with respect to z and r to exclude the pressure p from the 1st and 3d equation 

in (3), we arrive at the system of two ordinary differential equations in the unknown functions f and u 

f l V  + Re ( -  .ff '" - 4,p) = 0 ,  ~," - Re (tip' - r ) = 0 .  (4) 

In dimensionless form the boundary  conditions are 

f ' ( - 1 ) = 0 ,  T ( - 1 ) = a  l ,  f ( - 1 ) = f l  at z = -  1; 

/ ' ( 1 ) = 0 ,  ~,(1)=,~2,  / ( 1 ) = ~  at z = l .  

(5) 

A solution of Eq. (4) is sought in the form of the series (Re << 1) 

n = 0  n=O n = 0  

Using the method of successive approximations and taking only the zeroth and first approximations,  instead 

of (4) we write 

] , I V + R e f l l V + R e ( _ f 0 f o , , _ 4 ~ o  ) = 0 ,  g0 + R e ~ ~ 1 7 6  = 0 .  (6) 

The  zeroth approximation allows us to obtain 

2 
" z 

f ~v  = O, = CI ' = Ct z  + C 2 '  = C1 7 + C2 z + C a , 

3 2 
z z " 

fo = Cl --~ + C 2 - ~  + Ca z + C 4; g o = O ,  ~o o = k 1,  ~'o = k~ z +  k 2 ,  

(7) 

where C1 - C4, kl, k2 are integration constants. 

In the first approximation system (6) gives the quadratures of the functions fl and ~'l: 

IV 
fl  Iv = fo fo" + 4~~ ~~ = -to ~P0 - ~~ fo"  (8) 
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Substitution of expressions (7) into (8) gives 

n 

~o I = 

(3  2 ) 
f V . CI __~ + C 2 _ ~  + C3 z + C 4 CI + (kl z + k2) , 

z 2 z 
C 1 -~- + C 2 -~- + C 3 z + C 4 k I - (k  1 z + k2) C 1 -~- + C 2 z + C 3 . 

Integration of (9) leads to the relations 

4 3 2 2 
" '  2 Z Z Z Z 

fl = C1"~ + CI C 2 ~  + C1 C3~- + CI C4z+  2k 1 T  + 4k2-  z + n 1, 

5 4 3 2 2 2 
f ;  2 z z z z z z 

= C  l ~ + C  l C  2 - ~ + C  1C a - -~+C IC 4-~-+2k l ~ - + 2 k  2 -~ -+n  l z + n 3 ,  

6 5 4 3 2 3 2 
2 z 1 ~  z z z 3 z f l '  = C1 - f f ~  ar C I  C2  "b C 1 C 3 - ~  W C 1 C a ~ + k I -6-- + 2k2 + r/1 - 2  + t12 z + n 3 , 

(9) 

(10) 

7 6 5 4 5 4 3 2 
2 z z z z z z z z 

fl = C  ~ + C  1 C 2 ~ + C  IC 3 ~ + C  1 C 4 ~ - + k  13-0 + k 2 6  + n16- + n2-2- + n 3 z +  n 4. 

In a similar way,  for the function ~o we have 

4 3 2 4 3 
' z z z 8 ~~ = Clkl  ~ + C2kl 6 + C3kl 2 + C4kl z _ klCl _ klC2 z -3 

2 3 2 
z z z 

-- k l C 3  --2 - C l k 2 - 6  - C2k2 - 2  - C3k2 z + Pl , (11) 

5 4 3 2 5 4 
z z z z z z 

tPl = C l k l  - ~  + C2k l  - ~  + C3k l  - 6  + C4kl  - 2  - k lC1 ~ - k l C 2  12 

3 4 3 2 
z z z 

-- k l C 3  - C l k 2  - ~  - C2k2 - 6  - C3k2 - 2  + Pl z + P2 �9 

In sys tems (10) and (11) the integration constants n l - n4, P l,/92 are determined under boundary condit ions (5). 

In this case,  use is made  of the equations f l  = f~ (z) and fl  = fl  (z) in sys tem (10) and ~ = ~ l  (z) in (11).  

Thus,  the solution of problem (1) and (2) is expressed in the form 

( 3  ) ( 6  5 4 
Z Z Z Z 

C 1 - ~ + C 2 z + C  3 - R e  C - f f ~ + C  I C  2 ~ + C I C  3 ~ +  

3 4 3 2 
Z Z Z Z 

J + C 1 C4-~- + k I -~- + 2k 2 --j- + n 1 ~- + n2z + n 3 , 

~_~ 4 3 2 
Z Z z 

v = k 1 z + k 2 + R e  C l k  I + C2kl  2-4 + C3k l  6 + C4C1 -2 

5 4 3 4 3 2 
z z z z z z J -- k l C l  ~ - k l C 2  - ~  - k l C 3  --~ - C l k 2  - ~  - C2k2 ~ - C3k2 2 + Pl z + P2 , (t2) 
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Z Z Z Z Z 
w = C  1-6- + C 2 ) -  + C 3 z + C  4 + R e  C ~ + C t C  2 ~ + C I C  3 ~ +  

5 4 5 4 3 2 '~ 
z z z z z z 

J + C1C 3 ~ +  CIC 4 - ~ +  k 1--~ + k 2 ~  + n 1--~+ n 2 ~  + n 3 z  + n 4 . 

For determination of the integration constants Cl - C4, kl, k2, nl - n4, Pl, and P2, boundary conditions 
(5) were expanded into power series. In the zeroth approximation we have 

f 0 ( -  1) = 0 ,  ~o0(- 1 ) = a  1, f 0 ( -  1) = f l ;  
(13) 

/o (1) = o ,  (1) = az ,  /o ( l)  = 1. 

The first approximation gives 

f 
fl ( -  1) =~,1 ( -  I) = f l  ( -  1) = 0 ;  f l ' (1)  =~o l (1)  = f l  (1) = 0 .  (14) 

As a result, using (13) ,  we obtain from (7) 

1 (1 +fl )"  3 3 ( l _ f l ) ,  C4 2 C t = - ~ ( f l - 1  ) ,  C 2 = 0 ,  C a =  ~ = , 

(15) 
1 1 2 - a l ) ,  k 2 = 2 ( a l + a 2 ) -  

Substitution of (14) into expressions (10) and (11) gives 

1 2 1 2 1 1 2 
nl = - - ~  C1 - ClC3 - 5 kl ; n2 = - 120 CIC2 - 6 C I C 4  - 3 k2 ; 

1 2 1  ~0 1 ~4 1 n3 = 2520 C1 + ~ C1C3 + kl ; n4 = - ~  CIC2 + CIC4 + 6 k2 ; (16) 

Pl = 6-o Clkl  + -~ C2k2 ; P2 = C2kl + Clk2 + 2 C3k2 - 2 C4k1" 

2. Now consider the heat transfer process. Assuming that the temperature drop along the radius of the slot 

is insignificant for the case of rotational symmetry, this equation can be written in the following dimensionless 

w P e d T  _ d 2 T  (17) 
dz dz 2 " 

form: 

In being made dimensionless, the dimensional temperature is referred to the surface area of the upper 
subliming disk T s. As the boundary conditions for Eq. (17), use will be made of the condition of constant sublimation 

temperature T = 1 at z = 1 and the heat balance equation 2 ( d T / d z )  = - h q / T s  at z = - 1. Then, the solution of this 

problem can be written in the form 

Upon integration, we obtain the temperature distribution along the height of the gap between the disks 
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Fig. 2. Temperature distribution in slot between disks: 1, 2, 3) Pe = Re = 0.5, 

m = l ,  a l f c e 2 = l ;  1 ) / 3 = 0 ,  2 ) / 3 = 0 . 5 ,  3 ) / 3 = 1 .  

T =  1 - m  exp Pe - C 1 - C  2 ~ -  C 3 ~ -  C a -  

- e[4 1 1 1 l 
+ C1C2 + ClC3 ~ + C1C4 - i ~  + kl ~ + 

1 1 1 z 
+ k 2 + n I - ~  + n 2 ~ + n 3 -~ + n exp Pe 4C 1 ~-~ + 

1 

3 2 C4z [[34072------0 CIC2 7 CIC3 6 z z z 
+ C 2 6  + C s 2  + + R e  C + - - +  + 5040 

z z z z z 2 + CIC 4 ~ + k  l ~ + k  2 ~ +  n 1--~+ n 2--~+ n 3 + n 4 dz . (19) 

In Fig. 2 one can see the shapes of the temperature distribution in a narrow slot between the disks that 

were calculated from formula (19) at different values of the injection (suction) coefficient of subliming vapor/3 from 

the channel through the porous disks. It can be seen that as/3 rises, the temperature of the lower heated disk falls. 

A similar effect is observed as the rotational velocity of the disks increases. This indicates a positive effect of the 

suction coefficient/3 and the effect of rotation of the disks cq and a2 on intensification of sublimation in the channel 
between the disks. 

N O T A T I O N  

h, half-width of gas gap; q, intensity of heat flux; COy, angular velocity of disks, subscript j = I, 2, refers to 

upper and lower disks, respectively; Ws, sublimation rate; z, r, cylindrical coordinates; p, density; p, pressure in 

gas gap; Ts, sublimation temperature; Re, Reynolds number; a / =  w]h/w s, dimensionless rotation velocity of disk; 

fl = Wl/Ws, dimensionless injection (suction) coefficient; w], injection (suction) rate through porous disk; Pe = 

hws/a, Peclet number; a = 2/(pCp), thermal diffusivity; 2, thermal conductivity; Cp, isobaric heat capacity; m = 

Pers/(TsCo), dimensionless complex; r s = q/(pws) , sublimation heat. 
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